US009338192B1

a2 United States Patent 10) Patent No.: US 9,338,192 B1
He et al. 45) Date of Patent: May 10, 2016
(54) CONNECTION MANAGEMENT USING (56) References Cited
CONNECTION REQUEST TRANSFER
PROTOCOL U.S. PATENT DOCUMENTS
) 7,711,956 B2* 52010 Kinoshita et al. ... 713/168
(71) Applicant: JUNIPER NETWORKS, INC., 2008/0177829 Al* 7/2008 Banerjee etal. 709/203
Sunnyvale, CA (US) 2009/0132714 AL* 5/2009 Blander etal. 709/227
2009/0177788 Al* 7/2009 Ishikawa et al. 709/228
) .) 2012/0239775 Al* 9/2012 Hubbardetal. 709/217
(72) InVentOrS. Junx¥ao He’ Saratoga5 CA (.US)5 Jaspal 2012/0271905 Al E3 10/2012 ISSa. """"""""" . 709/213
Kohli, Sunnyvale, CA (US); Kumar 2014/0122580 A1* 52014 Nuaimi etal. 700/203

Narayanan, Saratoga, CA (US); Arun

Kumar Srinivasan, Kanchipuram (IN) * cited by examiner

. . . Primary Examiner — Chris Parry
(73) Assignee: gll;g;per Networks, Inc., Sunnyvale, CA Assistant Examiner — Stephen Houlihan

(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 7) éBSTRACT)))
U.S.C. 154(b) by 411 days. A network device receives, from a client device, a client
request associated with a connection with a server device,
(21) Appl. No.: 13/730,023 where the client request identifies requested content. The
network device determines connection information that iden-
(22) Filed: Dec. 28. 2012 tifies the connection with the server device, transmits, to a
’ ’ proxy server, a connection transfer request that identifies the
(51) Int.CL connection information and the requested content, and

receives, from the proxy server, an indication that the proxy

GOGF 15/16 (2006.01) server is capable of providing the requested content. Based on
HO4L 29/06 (2006.01) receiving the indication, the network device provides, from
Ho4L 29/08 (2006.01) the proxy server to the client device, a response to the client
(52) US.CL request, and provides, from the proxy server and to the server
CPC ...ceeee. HO4L 65/1069 (2013.01); HO4L 67/28 device, information that causes the server device to terminate
(2013.01); HO4L 69/16 (2013.01); HO4L the connection. The network device may use a connection
69/165 (2013.01) request transfer protocol to transmit the connection transfer
(58) Field of Classification Search request, and the client request may be an HTTP request.
CPC combination set(s) only.
See application file for complete search history. 20 Claims, 13 Drawing Sheets
100 —yg
Proxy
Cluster
Terminate TCP
connection
Respond to between client
client device and origin
request server
Client Network Origin

Device Device Server

US 9,338,192 B1

Sheet 1 of 13

May 10, 2016

U.S. Patent

Janseg

Vi "Old

a0inaq
SHOMIEN

UONOBUUOY) DL

)

)

1senbai

usid

18AI9S
Axoid Ag paIois St Jusu0d
paisanbal jey} suuLBIS(g ~—

1818niD
Axoid

BETNE IS
Axold

801Aa (]
Bl

¥— 001

US 9,338,192 B1

Sheet 2 of 13

May 10, 2016

U.S. Patent

19AIBG
ubLQ

gl 'Old

a01A8(]
NIOMISN

A

aoineq
UBYHD

)

Janes
uibuo pue aoinap
JUSHo Uasmiag
UOROSUU0D
d0. sleuiuuo |

4818110 JETRETS
Axoid Axoig

)

1senbal
juelo
0} puodsey

¥— 00t

US 9,338,192 B1

Sheet 3 of 13

May 10, 2016

U.S. Patent

(144
JEYNETS ——y
ubuQ
-
rd
/
)
\
N
>
— s
(]34 /
18D Axoid —\
AN
~
~

¢ 'Old

09¢
HOMBN

0%c
ao1na(]

NiomeN

ove
Janieg

Ax0ld

01¢
ao1ne(g

o0

US 9,338,192 B1

Sheet 4 of 13

May 10, 2016

U.S. Patent

09t

80BLISIY|
UOEOIUNUILIOYD

€ 'Ol

0S¢

wouodwon
ndino

0%¢

wauodwos
nduj

(]
(2]
82

Aouwiap

0ct

J0SS900Id

/; oi€

sng

¥— 00t

US 9,338,192 B1

Sheet 5 0of 13

May 10, 2016

U.S. Patent

D)

J9A10S UIBLIO BY) puB BDIABD JUSID BY] USDMIS]G UOROSULOD
dO1 BUl ‘UOEUIO[LOIOSUUOD 8l U0 Paseq ‘aleuiuLe |

06¥

\§/

i

Jondes Axoid
Pa109|8S Y] PUB BASP JUSHD SY) UBIMIB] UOHID_ULI0D
dDl1 B ‘UuoijBLlLLIOUl UOROSULOD 8yl U0 paseq ‘ysiigeisy

o ¥ 'Old

i

UOIIDBUUOD 4D | B} LIl POIBII0SSE UONBWIOU]

uonOaULO3 “1anlas Axold pajaales auy) 0} ‘Jusues |

0Ly

i

alars

1senbal yusyo ay) aoiales 0} Jonias Axoid e 108jeg

09y

Y Y

ooy —7

1sanbai Jusyp sy}
- UM PO)RIDOSSE adinap UCHIBUNSSP ovy
e 0} 1senbai U0 8y} aInoy

;iasuel)
UOIJOBUUOD B 10}
a)epipued e jsenbai
ju21id a4y S|

iAonas Axoud B
At paoinias aq jsanbal
1o 8l uen

ocey

1aasas uibuo ayy pue
D2IABP JUSID B} UadM]aQg UDIOSULCD 401 € Ysiigeis]

A

Ju8U0D paisanbal spiaoid 0} Janses Uibuo ue seyuap)
1.y} 1sonbal Jusi0 e ‘901Aap JUBHD B WO ‘OAI809Y

02y

Oiy

US 9,338,192 B1

Sheet 6 of 13

May 10, 2016

U.S. Patent

t
....................... _ " mmm
}senbau JusyD 89IAISS PURJLONDSUUOD (O] ystigelsy
!
A COEO@CCOO _ Omm
dOl ojeutua] .
....................... Ssuodsen PRSIl I000 s R I R 1+
. uwwﬁ—uum._.kmwwcm._u ... Omm
d1¥D wiyuo)
. vmijumggwkwcmh. ... mvm
d1yD siepieA
....................... - uwmﬂ_ummgmu_.mCm._u_nal_nmo Ovm
........................... _m\(_mw>xogau.0®_®m mmm
.............................. COGNE;O%C~H Omm
UOHI02ULIOD sulwIBe1s(
... -t H_.wm_g_uwm uC@:O e e e e e e e mNm
_
- “ Umzwznmwwm ON@
“ UoHOBULIND dD L ~ MOV
. ERRRRERRRRY 6L
“ MOVINAS
A “ Om\m
) NAS
07z oz onje dovyy 05z o1z S Old
BET YT BTN dum:._E 181 “Ju] 20188 20i1A9(]
wbuo Axo.id % MIOMIBN jusyn . 005

US 9,338,192 B1

Sheet 7 of 13

May 10, 2016

U.S. Patent

jsenbau juslD 8oiAIas pue

:...:...c.q:.o‘%coo:._“v
dOl ejeunuia}

oy

P>

asuodsay Jajsuel] d1yD

....... C O:WELO%C_ RN H

UojoauUu0d auiulsiag

UQHOIUUOD 4D 1 cm__nmywmv

.. “ wmm_ﬂ—ummucmzo
.. “ U@EW:Qmﬂwm
uoidauUod dJ 1 — MOV

.. TG o
.. - S

— — anle daay — R

Janleg BETNET “ozijeny] 221A8(Q aoIna(g

uibuo Ax0id - mom | }IOMISN waln

US 9,338,192 B1

Sheet 8 of 13

May 10, 2016

U.S. Patent

(1744
JEYNETS

V. 'Old

BlefiieL=TH[Elolg)

0%z ddl %nﬁmm o012
aolnaQg £ 90IAS(
NIOMION \N/ usHD

/ 19%0Bd MOV

190Bd MOW/NAS

[.
_J

~ ./ 1®ed NAS

-
~ ™~
~ ~
~ ~
\ /
~ ~
-~ ~
d01 08 geol 68°Lv9'102 €T L P90z
Hod sSS9IppY
1090104 | 0 binsaq | HOd 90IM0S JonBUSaq SS2IPPY 90IN0S

[o]W2
UOIIBULIOM| UOOBUL0D
Y— 00!

US 9,338,192 B1

Sheet 9 of 13

May 10, 2016

U.S. Patent

4. '9Old

001879012 s ¢°iqe3 bugnol
72 1onog AXoid 08 LZ eV ¥9' 102 o
o1 ooy Hod SS2IPPY -
uoneusadg uoeunsaq
0¢Z s|ge] seInqUnY

ajqe| Bupnoy uonOBULON
139 diiH 08
ainieublg Hod Mhmu_wcmb 10}
uopealddy uojeusaq | ejepipue)

s|q2 | S81NquY

UonoBUUOY Ul Yol ON Gl

L1991 02
ENTeTg)
uoljeulsag

09¢
80IneQg

NiomleN

PIAOBPIA JUSIUOD
139 d1iH 7Ois ddy
G20l “Hod 1s8g
L17L099LOC TPRY IS8
1senbay oD

ais
!

1]
801A9(]

USHD

¥Y— 00,

US 9,338,192 B1

Sheet 10 of 13

May 10, 2016

U.S. Patent

001'8'v9'0iC
(574
JoAIag AX0id

a|qe Bupnoy ut yolew 02

I, '9Ol4

00L'8'%9°102 e ¢eiqe} Bugnod
557 Joniag Axold 08 1ZEP ¥9'L02 L
o oy Hod SS2IPPY
uoseuysaqg | uoneunseq
0¢L sigeL SeINqUIY
ajqe]. bunnoy UonoBUUOYD
139 dLiH 08
-t
ameubis Hod ;Jejsuel) o}
uoneoyddy uofleuisad | ejepipued

05z
801n8(]
MIOMBN

PIA'OBIDIA JUSIUOD
139 dl1iH ~Big ddy
08 'Hod 1s9Q
LZ'EP $9'10Z TPPY 1se
1senbay WLl
519

!

012
801A8Q

JEEtie

¥— 00/

US 9,338,192 B1

Sheet 11 of 13

May 10, 2016

U.S. Patent

d.l ‘Soid

ajqe} Bugnoy
0¢Z
004'8'¥9°L0Z NN ¢aiges Bupnou
552 1ontag Axoid 08 L2 EeY ¥9 10T B uj
o1 810 Hod $S8IPPY
1 =iney uofieuisag uoneunssq
7 GG/ a|qe) Buynol ut joN
JdnIeg Axold
097
1sanbay 057 Uoien snqupy
Jejsuelf 4140
139 dilH 08
.}
ainjeubis Hod ¢ Jajsuel] 1oy
uoneoyddy uopeunssd | ejepipued
0¢Z
ajge | semnguiy
Sl JiL =11 I o9

PINOBDIA JUSiU0]
139 d1iH 6ig "ddy
08 'MHod 1s8Q
66'86'Y9°L0Z PPV 1880
1senbay Jusn

0%¢
80IA8(]
MOMION

572

[1]%4
20I1A8(

LeLllte)

Y— 00/

US 9,338,192 B1

Sheet 12 of 13

May 10, 2016

U.S. Patent

ove
18AI8S AX0ld

3. "Old

66'66v9'10C
(1744
Janzog uibuQ

PIAQIapIA JUIIUCD
139 dLiH rBig "ddy
it 08 Mod '1seQ
044 66'66'79'L0Z PPY 1590
jsenbay usyn

]2

!

19A188 uibuio 0)
1sanbal ualo 8oy

{

Go7
mosui | 0%
/ 8suocdsay eAnefen ao1A8(] ore
NIOMIBN |uine(d
JUSBID
¥— 00L

US 9,338,192 B1

Sheet 13 of 13

May 10, 2016

U.S. Patent

4 "Old

66'66'¥9°102
(if#4
Bales wbuo

PIA'CBRIA JUDIUCD
139 diiH rBig "ddy

UOROBULOD 08 uod 188Q
. dO1 eeuiuia] 66'66'¥9°'L0Z PPV 1580
bLL pOTL0Z 061 158nbay s
074 =57
Janes Axoid N
N -
{ 007
7T / i uondsuULD
gl 05¢ o
asuodsay aASOd / 201A8(Q N dO1 usiiqels3 o1z
/ FIOMISN / Ve
waiD
/ AN
/ AN
ajgel Bupnoi
0} Aijua ppy
UL P97 102 e 5T
T¥2 1oMsg AXoid 08 66'66V9°L0Z | G8/
001'8¥9°102 sy
057 0¥z Joniag Axoid 08 LZEY Y9 10T
ajget Bugnoy Tod SOy
0L eInod uojeuseg | uoneunseg ¥— 002

US 9,338,192 B1

1
CONNECTION MANAGEMENT USING
CONNECTION REQUEST TRANSFER
PROTOCOL

BACKGROUND

A server cluster is a group of computers (sometimes
referred to as servers, proxies, or nodes) interconnected via a
local area network. The computers in the server cluster may
work together to improve performance over the performance
achieved by a single computer. For example, server clusters
may improve information availability and response time
through redundant data storage.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are diagrams of an overview of an
example implementation described herein;

FIG. 2 is a diagram of an example environment in which
systems and/or methods described herein may be imple-
mented;

FIG. 3 is a diagram of example components of one or more
devices of FIG. 2;

FIG. 41is a flow chart of an example process for transferring
a connection to a proxy server;

FIGS. 5 and 6 are diagrams of example call flows for
transferring a connection to a proxy server using a connection
request transfer protocol (CRTP); and

FIGS. 7A-7F are diagrams of example implementations
relating to the example process shown in FIG. 4.

DETAILED DESCRIPTION

The following detailed description of example implemen-
tations refers to the accompanying drawings. The same ref-
erence numbers in different drawings may identify the same
or similar elements.

A group of computers (sometimes referred to as servers,
proxies, or nodes) interconnected via a local area network
may be referred to as a server cluster (e.g., in a data center, a
point of presence, etc.). The computers in the server cluster
may work together to improve performance over the perfor-
mance achieved by a single computer. For example, a server
cluster may improve information availability and response
time through redundant data storage. A set of servers that
stores information also stored on one or more other servers
may be referred to as a proxy cluster. The redundant storage
may be referred to as a cache.

A proxy cluster may be used to service requests from client
devices (e.g., personal computers, mobile devices, etc.).
However, servicing client requests using a proxy cluster may
cause processing delays due to bottlenecks at devices that
analyze and route incoming requests and responses. Servic-
ing the client requests with a proxy cluster may require com-
plex routing policies for symmetric routing to ensure that
requests and responses are routed through the same devices.
The client requests may place a large demand on resources
due to a need to intercept, track, and manage all connections
(e.g., transmission control protocol (TCP) connections) that
pass through the proxy cluster. Implementations described
herein may alleviate such issues by using a connection
request transfer protocol (CRTP) to intercept client device
requests that can be serviced by the proxy cluster and to
establish a direct connection (e.g., a TCP connection)
between a proxy server in the cluster and the client device.

FIGS. 1A and 1B are diagrams of an overview of an
example implementation 100 described herein. As shown in

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1A, implementation 100 may include a client device, an
origin server, a proxy server included in a proxy cluster, and
anetwork device. The client device may include, for example,
a personal computer or a mobile device. The origin server
may include, for example, a server device. The proxy server
may include, for example, one or more server devices
included in the proxy cluster. The network device may
include a router, a switch, etc. that may route traffic between
the client device, the origin server, and/or the proxy server.

As further shown in FIG. 1A, the network device may assist
in establishing a connection (e.g., a transmission control pro-
tocol (TCP) connection) between the client device and the
origin server. For example, the client device may request
content, such as a video, from the origin server. The client
device and the origin server may establish a TCP connection
so that the origin server can respond to the request (e.g., by
providing the content). The network device may receive the
client request, may determine the origin server that provides
the requested content, and may provide information to the
client device and the origin server that assists in establishing
the TCP connection between the client device and the origin
server.

Once the TCP connection has been established, the net-
work device may determine whether the client request can be
serviced by the proxy server (e.g., in the proxy cluster). For
example, the network device may determine whether the
proxy server stores (e.g., caches) the requested content. If the
requested content is not cached by the proxy server, the net-
work device may forward the client request to the origin
server.

As shown in FIG. 1B, if the requested content is cached by
the proxy server, the proxy server may terminate the TCP
connection between the client device and the origin server
(e.g., by sending a TCP termination command, to the origin
sever, via the network device), and may respond to the client
request by providing the requested content to the client device
(e.g., via the network device). The response may establish a
TCP connection between the client device and the proxy
server, which may be used to service the client request. To
establish the TCP connection, the proxy server may create an
endpoint (e.g., may provision a socket, port, etc.) for TCP
packets transmitted by the client device (e.g., packets that
otherwise would have been transmitted to the origin server,
but that have been intercepted by the network device and
forwarded to the proxy server).

FIG. 2 is a diagram of an example environment 200 in
which systems and/or methods described herein may be
implemented. As shown in FIG. 2, environment 200 may
include a client device 210, an origin server 220, a proxy
cluster 230, a proxy server 240, a network device 250, and a
network 260. The devices of environment 200 may intercon-
nect (e.g., via network 260) via wired connections, wireless
connections, or a combination of wired and wireless connec-
tions.

Client device 210 may include a device capable of access-
ing network 260 and/or communicating with the devices
shown in FIG. 2. For example client device 210 may include
a desktop computer, a laptop computer, a tablet computer, a
handheld computer, a smart phone, a radiotelephone, a gam-
ing system, a set-top box, or a similar device. In some imple-
mentations, client device 210 may request content from ori-
gin server 220 and/or proxy server 240, and may receive the
requested content from origin server 220 and/or proxy server
240.

Origin server 220 may include one or more servers (e.g.,
application servers, web servers, etc.), or similar types of
computation and communication devices (e.g., a desktop

US 9,338,192 B1

3

computer, a laptop computer, etc.). Origin server 220 may
store content, and may provide the content to client device
210 based on a request for the content.

Proxy cluster 230 may include one or more servers, or
similar types of computation and communication devices,
interconnected via a network (e.g., a local area network). For
example, proxy cluster 230 may include multiple proxy serv-
ers 240, which may be organized into a multi-tier structure
(e.g., a multi-tier data center). Proxy cluster 230 may also
include network device 250. In some implementations, net-
work device 250 may act as a tier one node in a multi-tier
proxy cluster 230, and proxy server 240 may act as a tier two
node in a multi-tier proxy cluster 230.

Proxy server 240 may include one or more servers, or
similar types of computation and communication devices
(e.g., a desktop computer, a laptop computer, etc.). Proxy
server 240 may store content, and may provide the content to
client device 210 based on a request for the content. In some
implementations, proxy server 240 may store and/or provide
content that is a duplicate of content stored by origin server
220. In some implementations, proxy server 240 may include
a device that manages one or more proxy servers 240 (e.g., a
device that selects a proxy server 240 to provide content based
on, for example, load balancing, server capabilities, an algo-
rithm etc.). Additionally, or alternatively, proxy servers 240
may communicate with one another to coordinate content
storage and availability, exchange service availability status,
exchange connections to achieve load balancing, etc.

Network device 250 may include one or more traffic trans-
fer devices. For example, network device 250 may include a
router, a switch, a firewall, a hub, a bridge, a gateway, a
modem, a network interface card (NIC), an optical add-drop
multiplexer (OADM), a server, and/or another device capable
of transmitting, receiving, transferring, and/or processing
network traffic. Network device 250 may transfer traffic
between and/or among the devices shown in FIG. 2. In some
implementations, network device 250 may be included in
proxy cluster 230. Additionally, or alternatively, network
device 250 may be included in network 260. In some imple-
mentations, a first network device 250 included in proxy
cluster 230 may communicate with (e.g., by transferring traf-
fic to and/or receiving traffic from) a second network device
250 included in network 260.

Network 260 may include one or more wired and/or wire-
less networks. For example, network 260 may include a cel-
Iular network, a public land mobile network (“PLMN”), a
radio access network, a local area network (“LAN™), a wide
area network (“WAN”), a metropolitan area network
(“MAN™), a telephone network (e.g., the Public Switched
Telephone Network (“PSTN™)), an ad hoc network, an intra-
net, the Internet, a fiber optic-based network, and/or a com-
bination of these or other types of networks. In some imple-
mentations, network 260 may include a switch, or another
traffic transfer device, that connects network device 250 to
proxy server 240.

The number of devices/networks shown in FIG. 2 is pro-
vided for explanatory purposes. In practice, environment 200
may include additional devices/networks, fewer devices/net-
works, different devices/networks, or differently arranged
devices/networks. Furthermore, two or more devices shown
in FIG. 2 may be implemented within a single device, or a
single device shown in FIG. 2 may be implemented as mul-
tiple, distributed devices. Additionally, one or more of the
devices of environment 200 may perform one or more func-
tions described as being performed by another one or more
devices of environment 200.

10

15

20

25

30

35

40

45

55

60

65

4

FIG. 3 is a diagram of example components of a device
300. Device 300 may correspond to client device 210, origin
server 220, proxy server 240, and/or network device 250. As
shown in FIG. 3, device 300 may include a bus 310, a pro-
cessor 320, a memory 330, an input component 340, an output
component 350, and a communication interface 360.

Bus 310 may include a path that permits communication
among the components of device 300. Processor 320 may
include a processor (e.g., a central processing unit, a graphics
processing unit, an accelerated processing unit), a micropro-
cessor, and/or any processing logic (e.g., a field-program-
mable gate array (“FPGA”), an application-specific inte-
grated circuit (“ASIC”), etc.) that interprets and/or executes
instructions. Memory 330 may include a random access
memory (“RAM?”), a read only memory (“ROM”), and/or
another type of dynamic or static storage device (e.g., a flash,
magnetic, or optical memory) that stores information and/or
instructions for use by processor 320.

Input component 340 may include a component that per-
mits a user to input information to device 300 (e.g., a touch
screen display, a keyboard, a keypad, a mouse, a button, a
switch, etc.). Output component 350 may include a compo-
nent that outputs information from device 300 (e.g., a display,
a speaker, one or more light-emitting diodes (“LEDs”), etc.).

Communication interface 360 may include a transceiver-
like component, such as a transceiver and/or a separate
receiver and transmitter, that enables device 300 to commu-
nicate with other devices, such as via a wired connection, a
wireless connection, or a combination of wired and wireless
connections. For example, communication interface 360 may
include an Ethernet interface, an optical interface, a coaxial
interface, an infrared interface, a radio frequency (“RF”)
interface, a universal serial bus (“USB”) interface, or the like.

Device 300 may perform various operations described
herein. Device 300 may perform these operations in response
to processor 320 executing software instructions included in
a computer-readable medium, such as memory 330. A com-
puter-readable medium may be defined as a non-transitory
memory device. A memory device may include memory
space within a single storage device or memory space spread
across multiple storage devices.

Software instructions may be read into memory 330 from
another computer-readable medium or from another device
via communication interface 360. When executed, software
instructions stored in memory 330 may cause processor 320
to perform one or more processes described herein. Addition-
ally, or alternatively, hardwired circuitry may be used in place
of or in combination with software instructions to perform
one or more processes described herein. Thus, implementa-
tions described herein are not limited to any specific combi-
nation of hardware circuitry and software.

The number of components shown in FIG. 3 is provided for
explanatory purposes. In practice, device 300 may include
additional components, fewer components, different compo-
nents, or differently arranged components than those shown
in FIG. 3. Additionally, or alternatively, each of client device
210, origin server 220, proxy server 240, and/or network
device 250 may include one or more devices 300 and/or one
or more components of device 300.

FIG. 4 is a flow chart of an example process 400 for trans-
ferring a connection to a proxy server. In some implementa-
tions, one or more process blocks of FIG. 4 may be performed
by network device 250. Additionally, or alternatively, one or
more process blocks of FIG. 4 may be performed by another
device or a group of devices separate from or including net-
work device 250, such as proxy server 240.

US 9,338,192 B1

5

As shown in FIG. 4, process 400 may include receiving,
from a client device, a client request that identifies an origin
server to provide requested content (block 410). For example,
network device 250 may receive the client request, and may
analyze the client request to determine an origin server 220 to
provide content requested in the client request. In some
implementations, the client request may include a packet that
identifies origin server 220 as a destination. The requested
content may include textual content, an image, media content
(e.g., audio, video, etc.), streaming content, a web page, or
any other content.

As further shown in FIG. 4, process 400 may include
establishing a transmission control protocol (TCP) connec-
tion between the client device and the origin server (block
420). For example, network device 250 may provide, to client
device 210 and/or origin server 220, connection information
that assists in establishing a TCP connection. Client device
210 and origin server 220 may use the connection information
to establish a TCP connection.

The connection information may include information that
identifies, for example, a source network address associated
with the TCP connection (e.g., an Internet protocol (IP)
address of client device 210); a destination network address
associated with the TCP connection (e.g., an IP address of
origin server 220); a source port associated with the TCP
connection (e.g., that serves as an endpoint for the TCP con-
nection on client device 210); a destination port associated
with the TCP connection (e.g., that serves as an endpoint for
the TCP connection on origin server 220); a sequence number
associated with the TCP connection (e.g., an initial receive
sequence number from client device 210 and/or origin server
220, an initial send sequence number from client device 210
and/or origin server 220, a current sequence number from
client device 210 and/or origin server 220, etc.); an acknowl-
edgement number associated with the TCP connection; a
window size associated with the TCP connection, a protocol
associated with the TCP connection (e.g., IP version 4 (IPv4),
1P version 6 (IPv6), etc.); an application signature associated
with the TCP connection (e.g., a GET, HEAD, extended hello
(EHLO), HELO, etc. signature or command identified in the
client request); etc. In some implementations, the connection
information may be identified in the client request (e.g., in a
packet included in the client request).

In some implementations, the TCP connection may be
established by a three-way handshake process. For example,
client device 210 may transmit, to origin server 220 (via
network device 250), a packet that includes a request for a
TCP connection to be established, also known as a SYN
(synchronize) packet. Origin server 220 may receive the SYN
packet, and may transmit, to client device 210 (via network
device 250), a packet that includes an acknowledgement that
the SYN packet was received, also known as a SYN/ACK
(synchronize/acknowledgement) packet. Client device 210
may receive the SYN/ACK packet, and may transmit, to
origin server 220 (via network device 250), a packet that
includes an acknowledgement that the SYN/ACK packet was
received, also known as an ACK (acknowledgement) packet.
A TCP connection between client device 210 and origin
device 220 may be established using this three-way hand-
shake process (SYN, SYN/ACK, and ACK).

As shown in FIG. 4, process 400 may include determining
whether the client request is a candidate for a connection
transfer (block 430). For example, network device 250 may
determine whether the client request is a candidate for con-
nection transfer based on the connection information associ-
ated with the client request, such as a TCP port (e.g., a source
port, a destination port, etc.), an application signature (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

6

GET, HEAD, EHLO, etc.), a protocol associated with the
client request, and/or other connection information (e.g., a
uniform resource locator (URL) associated with an HTTP
request, a header associated with an HTTP request, etc.)
identified in the client request. Additionally, or alternatively,
network device 250 may determine whether the client request
is a candidate for connection transfer based on whether the
connection information associated with the client request
(e.g., a destination address, a destination port, etc.) is identi-
fied in a data structure (e.g., a routing table) accessible by
network device 250.

If the client request is not a candidate for the connection
transfer (block 430—NO), then process 400 may include
routing the client request to a destination device associated
with the client request (block 440). For example, if network
device 250 determines that the connection information iden-
tified by the client request does not meet one or more criteria
(e.g., stored in a data structure accessible by network device
250), then network device 250 may route the client request to
a destination device identified in the request (e.g., origin
server 220). For example, if the client request is not associated
with a TCP protocol, a particular TCP port, a particular net-
work address, a particular application signature, etc., then
network device 250 may route the client request to origin
server 220. Additionally, or alternatively, if network device
250 determines that the client request is identified in a routing
table (e.g., identified by destination network address, desti-
nation port, etc.), then network device 250 may route the
client request to a destination device identified in the routing
table as being associated with the client request (e.g., origin
server 220, proxy server 240, or another device).

Ifthe client request is a candidate for the connection trans-
fer (block 430—YES), then process 400 may include deter-
mining whether the client request can be serviced by a proxy
server (block 450). For example, if network device 250 deter-
mines, based on the connection information associated with
the clientrequest (e.g., as explained in connection with blocks
430 and 440, above), that the client request is a candidate for
a connection transfer, then network device 250 may deter-
mine whether the client request can be serviced by proxy
server 240.

In some implementations, network device 250 may deter-
mine whether the client request can be serviced by proxy
server 240 by analyzing the client request to determine
whether the client request is associated with cacheable or
non-cacheable information. Additionally, or alternatively,
network device 250 may transmit, to proxy server 240, infor-
mation that identifies the content requested by client device
210. Proxy server 240 may determine whether the requested
content is stored by proxy server 240 (or another proxy server
240 in proxy cluster 230), and may transmit, to network
device 250, an indication of whether the requested content is
stored by and/or accessible by proxy server 240. Network
device 250 may determine whether the client request can be
serviced by proxy server 240 based on the received indica-
tion.

Ifthe client request cannot be serviced by the proxy server
(block 450—NO), then process 400 may include routing the
client request to a destination device associated with the client
request (block 440). For example, if network device 250
determines that the client request is for non-cacheable infor-
mation (e.g., bank account information, credit card informa-
tion, sensitive personal information, etc.), then network
device 250 may route the client request to origin server 220.
Additionally, or alternatively, if network device 250 receives
an indication that proxy server 240 does not store the

US 9,338,192 B1

7

requested content, then network device 250 may route the
client request to origin server 220.

If the client request can be serviced by the proxy server
(block 450—YES), then process 400 may include selecting a
proxy server to service the client request (block 460). For
example, if network device 250 determines that the client
request is for cacheable information (e.g., streaming audio or
video, a broadcast, a cacheable web page, etc.), and/or if
network device 250 receives an indication that proxy server
240 can provide the requested content, then network device
250 may select a proxy server 240 to service the client
request.

In some implementations, network device 250 may select a
proxy server 240 to service the client request based on one or
more algorithms, such as a round robin algorithm, a load
balancing algorithm (e.g., least load first), an application hash
algorithm, a least connections algorithm (e.g., least connec-
tions first), and/or a weighted version of these or other algo-
rithms. In some implementations, network device 250 may
select a proxy server 240 to service the request when deter-
mining whether a proxy server 240 can service the request.
For example, when transmitting, to proxy server 240, the
information that identifies the content requested by client
device 210, network device 250 may include a hash algorithm
that may be applied to select a proxy server 240 to service the
client request.

As shown in FIG. 4, if the client request can be serviced by
a proxy server (block 450—YES), then process 400 may
further include transmitting, to the selected proxy server,
connection information associated with the TCP connection
(block 470). For example, network device 250 may transmit
connection information, associated with the TCP connection
between client device 210 and origin server 220, to proxy
server 240. In some implementations, network device 250
may transmit the connection information to proxy server 240
along with the information that identifies the content
requested by client device 210. The connection information
may identity, for example, a network address, a port number,
a sequence number, an acknowledgement number, a window
size, a protocol, an application signature, etc., as described
elsewhere herein.

As shown in FIG. 4, if the client request can be serviced by
a proxy server (block 450—YES), then process 400 may
further include establishing, based on the connection infor-
mation, a TCP connection between the client device and the
selected proxy server (block 480), and terminating, based on
the connection information, the TCP connection between the
client device and the origin server (block 490). For example,
proxy server 240 may use the connection information,
received from network device 250, to create a TCP connec-
tion endpoint (e.g., a port, a socket, etc.) on proxy server 240
for a TCP connection with client device 210. Additionally, or
alternatively, proxy server 240 may use the connection infor-
mation, received from network device 250, to terminate the
TCP connection (e.g., to terminate a TCP connection end-
point on origin server 220) between client device 210 and
origin server 220. In some implementations, proxy server 240
may establish the TCP connection (e.g., by creating an end-
point) without transmitting a TCP control packet to client
device 210.

In some implementations, rather than terminating a TCP
connection between client device 210 and origin server 220,
and establishing a TCP connection between client device 210
and proxy server 240, process 400 may include terminating a
TCP connection between client device 210 and a first proxy
server 240, and establishing a TCP connection between client
device 210 and a second proxy server 240. In other words,

10

15

20

25

30

35

40

45

50

55

60

65

8

process 400 may include transferring a TCP connection from
an origin server 220 to a proxy server 240, and/or transferring
a TCP connection from a first proxy server 220 to a second,
different proxy server 240.

While a series of blocks has been described with regard to
FIG. 4, the blocks and/or the order of the blocks may be
modified in some implementations. For example, in some
implementations, process block 450 may occur before pro-
cess block 430. In some implementations, process block 460
may occur before and/or concurrently with process block
430. Additionally, or alternatively, non-dependent blocks
may be performed in parallel.

FIG. 5 is a diagram of an example call flow 500 for trans-
ferring a connection to a proxy server using a connection
request transfer protocol (CRTP). Call flow 500 may use
CRTP in an asymmetric proxy cluster 230 to service client
requests via proxy server 240. An asymmetric proxy cluster
230 may route traffic from client device 210 to origin server
220 via a different route than traffic from origin server 220 to
client device 210.

Network device 250 may assist with transferring TCP con-
nections, with client device 210, from origin server 220 to
proxy server 240. For example, origin server 220 may service
a client request from client device 210 via a TCP connection.
Network device 250 may assist in terminating the TCP con-
nection between origin server 220 and client device 210, and
establishing a TCP connection between proxy server 240 and
client device 210 so that proxy server 240 may service the
client request from client device 210.

In some implementations, network device 250 may deter-
mine whether the content requested by client device 210 is
available on proxy server 240. This content check may be
performed at the application layer of the TCP/IP protocol
(e.g., layer 7 of the open systems interconnection (OSI)
model), and the TCP connection transfer may be performed at
the transport layer of the TCP/IP protocol (e.g., layer 4 of the
OSI model). Connection request transfer protocol (CRTP)
may assist in communication and coordination between the
application layer (layer 7) and the transport layer (layer 4).

CRTP may be implemented as an application layer proto-
col, and may use TCP as a means for transportation at the
transport layer. CRTP may be used to transfer a TCP connec-
tion from one node (e.g., origin server 220) to another node
(e.g., proxy server 240). Additionally, or alternatively, CRTP
may transfer application information from one node to
another node. In some implementations, CRTP information
and/or connection information (e.g., TCP connection infor-
mation) described herein may be included in a client request
(e.g., as an extension to HT'TP). Additionally, or alternatively,
CRTP may use user datagram protocol (UDP) as a means for
transportation at the transport layer.

As shown by reference number 505, network device 250
and proxy server 240 may use CRTP to initialize, terminate,
and/or keep alive a communication channel.

To initialize a communication channel between network
device 250 and proxy server 240, network device 250 may
transmit, to proxy server 240, a CRTP initialization request,
and may receive a CRTP initialization response. Initialization
may include using a mechanism (e.g., a cookie) that stores
security information to protect against security attacks. For
example, proxy server 240 may store security information
(e.g., ahash value, a pre-shared key value, etc., which may be
periodically changed). When sending the CRTP initialization
request, network device 250 may request the security infor-
mation. Proxy server 240 may transmit, in the CRTP initial-
ization response, information that identifies the stored secu-

US 9,338,192 B1

9

rity information. Network device 250 may verify the received
security information before completing initialization of the
communication channel.

To terminate a communication channel between network
device 250 and proxy server 240, network device 250 may
transmit, to proxy server 240, a CRTP termination request,
and may receive a CRTP termination response. The termina-
tion may remove proxy server 240 from association with
proxy cluster 230.

Network device 250 may periodically send a CRTP keep-
alive request to proxy server 240. If network device 250 does
not receive a CRTP keep-alive response within a particular
time period, network device 250 may terminate the commu-
nication channel. The CRTP keep-alive request may include a
request for security information. Proxy server 240 may trans-
mit, in the CRTP keep-alive response, security information
stored by proxy server 240. Network device 250 may verity
the received security information to keep the communication
channel active. Ifthe received security information is invalid,
network device 250 may terminate the communication chan-
nel.

As shown by reference numbers 510-520, call flow 500
may include establishing a TCP connection between client
device 210 and origin server 220 via a three-way handshake
process. For example, as shown by reference number 510,
client device 210 may transmit, to origin server 220 (via
network device 250), a SYN packet. In some implementa-
tions, network device 250 may mute and/or remove informa-
tion that identifies TCP options, included in a TCP header of
the SYN packet, before routing the SYN packet to origin
server 220. As shown by reference number 515, origin server
220 may transmit, to client device 210 (via network device
250), a SYN/ACK packet. As shown by reference number
520, client device 210 may transmit, to origin server 220 (via
network device 250), an ACK packet. A TCP connection
between client device 210 and origin device 220 may be
established using this three-way handshake process (SYN,
SYN/ACK, and ACK).

As shown by reference number 525, client device 210 may
transmit, to network device 250, a client request. For
example, the client request may include an application signa-
ture, such as a hypertext transfer protocol (HTTP) request
(e.g., a GET request, a HEAD request, an HT'TP/1.1 request,
etc.), a simple mail transfer protocol (SMTP) request (e.g., a
HELO request, an EHLO request, etc.), etc. In some imple-
mentations, network device 250 may intercept the client
request without client device 210 explicitly transmitting the
client request to network device 250.

As shown by reference number 530, network device 250
may determine connection information associated with the
TCP connection and/or identified in the client request. For
example, network device 250 may determine a source net-
work address, a destination network address, a source port, a
destination port, a sequence number, an acknowledgement
number, a window size, etc., associated with the TCP con-
nection. Additionally, or alternatively, network device 250
may determine application information associated with the
TCP connection, such as an application associated with the
TCP connection, application requirements associated with
the TCP connection (e.g., bandwidth requirements, capacity
requirements, jitter requirements, packet delay requirements,
quality of service requirements, etc.), etc.

In some implementations, network device 250 may create
a connection identifier for the TCP connection. Network
device 250 may associate the connection identifier with pack-
ets associated with the TCP connection. The connection iden-
tifier may be used by network device 250 and/or proxy server

20

25

40

45

10

240 to identify packets associated with the TCP connection to
be transferred from origin server 220 to proxy server 240. In
some implementations, network device 250 more store the
connection identifier, the connection information, and/or the
application information in a data structure in order to track
packets associated with the TCP connection.

As shown by reference number 535, network device 250
may select a proxy server 240 to service the client request. In
some implementations, network device 250 may determine a
selection algorithm used to select the proxy server 240. For
example, the selection algorithm may be based on a round
robin algorithm; a load balancing algorithm (e.g., least load
first, most load first, etc.); an application hash algorithm (e.g.,
determining proxy server 240 based on an application asso-
ciated with the TCP connection); a least connections algo-
rithm (e.g., determining a proxy server 240 with the least
number of established TCP connections); an enforced trans-
fer algorithm (e.g., forcing a particular proxy server 240 to
handle a particular TCP connection); and/or a weighted ver-
sion of these or other algorithms.

In some implementations, the CRTP keep-alive request,
transmitted by network device 250 to proxy server 240, may
include information that identifies the selection algorithm.
Additionally, or alternatively, the CRTP keep-alive response,
transmitted by proxy server 240 to network device 250, may
include status information that assists network device 250 in
selecting a proxy device 240 using the selection algorithm.
For example, the CRTP keep-alive request may identify a
selection algorithm of least connections first, where network
device 250 selects a proxy server 240, with the least number
of established TCP connections, to service the client request.
In this example, the CRTP keep-alive response may identify
anumber of TCP connections that have been established with
proxy server 240. In this way, network device 250 may com-
pare the number of TCP connections associated with multiple
proxy servers 240, based on the status information identified
in the CRTP keep-alive response received from each of the
multiple proxy servers 240.

In some implementations, network device 250 may receive
input (e.g., from a user and/or another device) to change the
selection algorithm. For example, network device 250 may
receive input to change the selection algorithm to a least load
first algorithm, where network device 250 selects a proxy
server 240 with the least load to service the client request.
Subsequent CRTP keep-alive messages, transmitted by net-
work device 250, may identify the least load first algorithm.
In this example, the CRTP keep-alive response may identify
aload on proxy server 240 that transmits the CRTP keep-alive
response (e.g., a processing load, a memory load, etc.). In this
way, network device 250 may select a proxy server 240 with
a least amount of load to service the client request.

In some implementations, network device 250 may not use
a selection algorithm. For example, network device 250 may
use UDP as a transportation means for CRTP messages, and
may operate in a multicast mode. In multicast mode, network
device 250 may transmit the CRTP request to a multicast
address that identifies multiple proxy servers 240 in proxy
cluster 230. A proxy server 240 that is capable of servicing the
client request may transmit a positive acknowledgement
(ACK) that the client request can be serviced.

As shown by reference number 540, network device 250
may transmit a CRTP transfer request to the selected proxy
server 240. The CRTP transfer request may include a connec-
tion transfer request that a TCP connection be transferred
from a first device (e.g., origin server 220) to a second device
(e.g., proxy server 240). In some implementations, the CRTP
transfer request may identify the connection information

US 9,338,192 B1

11

(e.g., a source IP address, a destination IP address, an initial
receive sequence (IRS) number, an initial send sequence
(ISS) number, a source port, a destination port, etc. associated
with the TCP connection), the application information, the
client request, and/or the connection identifier.

In some implementations, the CRTP transfer request may
include a packet that identifies a packet acknowledgement
number and/or a packet sequence number. Network device
250 and/or proxy server 240 may determine an ISS number
based on the packet acknowledgement number, such as by
subtracting one from the packet acknowledgement number
(PAN) (e.g., ISS=PAN-1). Likewise, network device 250
and/or proxy server 240 may determine an IRS number based
on the packet sequence number, such as by subtracting one
from the packet sequence number (PSN) (e.g., IRS=PSN-1).
Network device 250 and/or proxy server 240 may use the ISS
and IRS numbers to establish the TCP connection between
client device 210 and proxy server 240 (e.g., to include the
correct sequence and/or acknowledgement number in a
packet included in a response to the client request).

Additionally, or alternatively, when transmitting the CRTP
transfer request, network device 250 may queue a packet (or
information that identifies a packet) associated with the client
request. For example, network device 250 may queue packets
based on priority. Network device 250 may compose a CRTP
transfer request for a packet at the head of the queue, and may
transmit the CRTP request to proxy server 240. Network
device 250 may determine an amount of time that has passed
since a packet was placed in the queue. If the amount of time
satisfies (e.g., is equal to or greater than) a threshold, then
network device 250 may route the packet to origin server 220.
In some implementations, the threshold may be based on a
TCP retransmission timeout value. In some implementations,
the threshold may be based on and/or calculated according to:

TO g 7p=SRIT+max{G KxRT T4z},

where TO .z » may be the threshold in seconds (e.g., a CRTP
timeout value), SRTT may be a smoothed round-trip time in
seconds (e.g., an estimated length of time for a TCP packet to
be sent and a TCP acknowledgement to be received), RT T,
may be a variation, in seconds, of the round-trip time, G may
be a clock granularity in seconds, and K may be a user-input
and/or machine-input constant (e.g., four).

As shown by reference number 545, proxy server 240 may
validate the CRTP transfer request. For example, a packet
included in the CRTP transfer request may include security
information, such as a security key, a coded value, a hash
value, etc. Proxy server 240 may validate the packet using, for
example, a decoder, a hash function, etc.

As shown by reference number 550, proxy server 240 may
confirm the CRTP transfer request. For example, proxy server
240 may determine whether the client request may be ser-
viced by proxy server 240. In some implementations, proxy
server 240 may determine whether content, requested in the
client request, is stored by and/or accessible by proxy server
240. Additionally, or alternatively, proxy server 240 may
determine whether proxy server 240 is able to service the
request based on the connection information and/or the appli-
cation information (e.g., application requirements).

As shown by reference number 555, proxy server 240 may
transmit, to network device 250, a CRTP transfer response.
The CRTP transfer response may include, for example, a
positive response (e.g., an ACK) or a negative response (e.g.,
a NACK). If the CRTP transfer response includes a negative
response (e.g., if proxy server 240 cannot service the client
request), then network device 250 may route the client request
to origin server 220. If the CRTP transfer response includes a

10

15

20

25

30

35

40

45

50

55

60

65

12

positive response (e.g., if proxy server 240 can service the
client request), then network device 250 and/or proxy server
240 may terminate the TCP connection between client device
210 and origin server 220 (e.g., as indicated by reference
number 560), and may establish a TCP connection between
client device 210 and proxy server 240 to service the client
request (e.g., as indicated by reference number 565).

In some implementations, the CRTP transfer response may
include connection information associated with proxy server
240. For example, the CRTP transfer response may include a
policy-based routing value that indicates which packets are to
be routed to proxy server 240 (e.g., based on connection
information identified in the packets). Network device 250
may route the packet (and/or other packets) identified by the
CRTP transfer request/response to proxy sever 240.

As shown by reference number 560, network device 250
and/or proxy server 240 may terminate the TCP connection
between client device 210 and origin server 220. In some
implementations, proxy server 240 may terminate the TCP
connection by sending a TCP reset command to origin server
220. The TCP reset command may use the connection infor-
mation to spoof client device 210. For example, the TCP reset
command may identify a source network address, a source
port, etc. associated with client device 210. Origin server 220
may terminate the TCP connection with client device 210
based on receiving the TCP reset command.

As shown by reference number 565, network device 250
may assist in establishing a TCP connection between proxy
server 240 and client device 210, and proxy server 240 may
service the client request. In some implementations, network
device 250 may determine connection information associated
with the TCP connection, and may transmit the connection
information, to proxy server 240, along with a command that
causes proxy server 240 to establish the TCP connection (e.g.,
by establishing a TCP socket to receive and/or transmit infor-
mation associated with the client request). In some imple-
mentations, proxy server 240 may service the client request
by providing the content, requested by client device 210 inthe
client request, to client device 210. In some implementations,
proxy server 240 may provide the content to client device 210
via network device 250. Alternatively, proxy server 240 may
provide the content to client device 210 without using net-
work device 250. For example, proxy server 240 may provide
the requested content to client device 210 by direct server
return.

While a series of communications has been described with
regard to FIG. 5, the communications and/or the order of the
communications may be modified in some implementations.
Additionally, or alternatively, non-dependent communica-
tions may be performed in parallel.

FIG. 6 is a diagram of an example call flow 600 for trans-
ferring a connection to a proxy server using the CRTP. FIG. 6
shows call flow 600 using a symmetric proxy cluster 230. A
symmetric proxy cluster 240 may route traffic from client
device 210 to origin server 220 via the same route as traffic
from origin server 220 to client device 210. In some imple-
mentations, the call flow of FIG. 6 may apply when network
device 250 is a load balancing device (e.g., a layer 7 load
balancer) that filters and distributes incoming traffic to proxy
cluster 230 (and/or outgoing traffic to client device 210). In
this scenario, proxy servers 240 in proxy cluster 230 may
share a virtual IP address.

As shown by reference numbers 605-615, network device
250 may intercept a request from client device 210 to estab-
lish a TCP connection with origin server 220. Intercepting the
request may include establishing a TCP connection between
client device 210 and network device 250 via a three-way

US 9,338,192 B1

13

handshake process. For example, as shown by reference num-
ber 605, client device 210 may transmit, and network device
250 may intercept and receive, a SYN packet. As shown by
reference number 610, network device 250 may transmit, to
client device 210, a SYN/ACK packet (e.g., which may spoof
the destination address, destination port, etc. associated with
origin server 220). As shown by reference number 615, client
device 210 may transmit, and network device 250 may inter-
cept and receive, an ACK packet. A TCP connection between
client device 210 and network device 250 may be established
using this three-way handshake process (SYN, SYN/ACK,
and ACK).

Reference numbers 505 and 525-555 may be performed as
described in connection with FIG. 5. For example, network
device 250 may receive a client request, may transmita CRTP
request to proxy server 240 to determine whether proxy
server 240 can service the client request, and may receive a
CRTP response from proxy server 240.

If the CRTP response includes a positive response (e.g., if
proxy server 240 can service the CRTP request), then network
device 250 may terminate the TCP connection between client
device 210 and network device 250 (reference number 620),
and proxy server 240 may establish a TCP connection with
client device 210 to service the client request (reference num-
ber 625).

While a series of communications has been described with
regard to FIG. 6, the communications and/or the order of the
communications may be modified in some implementations.
Additionally, or alternatively, non-dependent communica-
tions may be performed in parallel.

FIGS. 7A-7F are diagrams of example implementations
700 relating to the example process shown in FIG. 4.

As shown in FIG. 7A, network device 250 may assist in
establishing a TCP connection between client device 210 and
origin server 220. For example, network device 250 may
route a SYN packet from client device 210 to origin server
220, may route a SYN/ACK packet from origin server 220 to
client device 210, and may route an ACK packet from client
device 210 to origin server 220. As shown by reference num-
ber 705, this three-way handshake may establish a TCP con-
nection between client device 210 and origin server 220.

As shown by reference number 710, network device 250
may determine connection information associated with the
TCP connection (e.g., connection information identified in
one or more of the SYN packet, the SYN/ACK packet, and/or
the ACK packet). The connection information may include,
for example, a source address (e.g., an IP address of client
device 210), a destination address (e.g., an IP address of
origin server 220), a source port (e.g., an endpoint or socket
associated with the TCP connection on client device 210), a
destination port (e.g., an endpoint or socket associated with
the TCP connection on origin server 220), a protocol associ-
ated with the TCP connection (e.g., TCP), etc. In some imple-
mentations, network device 250 may store the connection
information in a data structure, as shown by reference number
710, and may use the stored information to track packets
associated with the TCP connection and/or a client request.

As shown in FIG. 7B, network device 250 may receive,
from client device 210, a client request 715. The client request
(which may include, e.g., a packet) may identify a destination
address (201.64.77.77), a destination port (port 1025), an
application signature (HTTP GET), requested content
(video.vid), other connection information, and/or other infor-
mation associated with requested content (e.g., application
information).

Network device 250 may determine whether client request
715 is a candidate for a TCP connection transfer by compar-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

ing connection information identified by client request 715 to
connection information stored in connection attributes table
720 (e.g., a data structure). Connection attributes table 720
may identify one or more attributes that qualify a client
request for a connection transfer. For example, connection
attributes table 720 may indicate that packets identifying a
destination port of 80 and/or an application signature of
HTTP GET are candidates for a connection transfer.

As shown by reference number 725, the attributes of client
request 715 (e.g., destination port 1025) do not match the
attributes stored in connection attributes table 720 (e.g., des-
tination port 80). As a result, network device 250 may route
client request 715 to a destination device identified in client
request 715 (e.g., a destination device identified by IP address
201.64.77.77). Additionally, or alternatively, network device
250 may determine whether a connection attribute of client
request 715 is identified in routing table 730, as described in
connection with FIG. 7C.

As shown in FIG. 7C, network device 250 may receive,
from client device 210, a client request 735. The client request
may identify a destination address (201.64.43.21), a destina-
tion port (port 80), an application signature (HTTP GET),
requested content (video.vid), etc.

Network device 250 may determine whether a connection
attribute of client request 735 is identified in routing table 730
(e.g., a data structure). Routing table 730 may identify one or
more attributes that qualify a client request for routing to a
destination address stored by routing table 730. For example,
routing table 730 may indicate that packets identifying a
destination address of 201.64.43.21 and a destination port of
80 are to be routed to proxy server 240 identified by a network
address of 201.64.8.100.

As shown by reference number 740, the attributes of client
request 735 (e.g., destination address 201.64.43.21 and des-
tination port 80) match the attributes stored in routing table
730. As a result, network device 250 may route client request
735 to a destination device identified in routing table 730
(e.g., proxy server 240 identified by IP address 201.64.8.100).

As shown in FIG. 7D, network device 250 may receive,
from client device 210, a client request 745. The client request
may identify a destination address (201.64.99.99), a destina-
tion port (port 80), an application signature (HTTP GET),
requested content (video.vid), etc.

As shown by reference number 750, network device 250
may determine that the attributes of client request 745 (e.g.,
destination port 80 and application signature HT'TP GET)
match the attributes stored in connection attributes table 720.
Additionally, as shown by reference number 755, network
device 250 may determine that the attributes of client request
745 do not match the attributes stored in routing table 730
(e.g., destination address 201.64.43.21).

As shown by reference number 760, based on the determi-
nations (750 and 755), network device 250 may transmit a
CRTP transfer request to proxy server 240. The CRTP trans-
fer request may identify client request 745, connection infor-
mation associated with client request 745 (e.g., destination
address, destination port, application signature, etc.),
requested content associated with client request 745 (e.g.,
video.vid), application information associated with client
request 745, etc.

As shown in FI1G. 7E, proxy server 240 may determine that
client request 745 cannot be serviced by proxy server 240. For
example, proxy server 240 may determine that video.vid is
not stored by proxy server 240. As shown by reference num-
ber 765, based on the determination that client request 745
cannot be serviced, proxy server 240 may transmit a negative
response to network device 250. Additionally, or alterna-

US 9,338,192 B1

15

tively, proxy server 240 may not respond to the CRTP transfer
request within a particular amount of time, causing a timeout
event to occur.

As shown by reference number 770, if network device 250
receives a negative response from proxy server 240 and/or if
the timeout event occurs, then network device 250 may route
client request 745 to origin server 220 (or a device identified
by a destination address associated with client request 745,
such as 201.64.99.99).

As shown in FIG. 7F, proxy server 240 may determine that
client request 745 can be serviced by proxy server 240. For
example, proxy server 240 may determine that video.vid is
stored by proxy server 240. As shown by reference number
775, based on the determination that client request 745 can be
serviced, proxy server 240 may transmit a positive response
to network device 250.

As shown by reference number 780, network device 250
may assist in establishing a TCP connection between client
device 210 and proxy server 240. For example, proxy server
240 may establish a TCP socket (or port) to establish the TCP
connection and service requests from client device 210 (e.g.,
client request 745). As shown by reference number 785, net-
work device 250 may store connection information associ-
ated with client request 745 (e.g., a source address, a desti-
nation address, a source port, a destination port, etc.) in
routing table 730 so that network device 250 may route pack-
ets associated with client request 745 to proxy server 240.

As shown by reference number 790, network device 250
may assist in terminating a TCP connection (e.g., established
in 705, FIG. 7A) between client device 210 and origin server
220. For example, network device 250 and/or proxy server
240 may transmit a TCP reset command to origin server 220,
which may cause origin server 240 to terminate the TCP
connection.

The foregoing disclosure provides illustration and descrip-
tion, but is not intended to be exhaustive or to limit the
implementations to the precise form disclosed. Modifications
and variations are possible in light of the above disclosure or
may be acquired from practice of the implementations.

Certain implementations have been described herein with
respect to TCP. In some implementations, the techniques
described herein may be used in connection with other pro-
tocols, such as user datagram protocol (UDP) and/or other
protocols included in the Internet protocol suite.

As used herein, the term “component” is intended to be
broadly construed as hardware, firmware, or a combination of
hardware and software.

The term “packet,” as used herein, may refer to a packet, a
datagram, a cell, a fragment of a packet, a fragment of a
datagram, a fragment of a cell, or any other type or arrange-
ment of data that may be carried at a specified communication
layer.

It will be apparent that systems and/or methods, as
described herein, may be implemented in many different
forms of software, firmware, and hardware in the implemen-
tations illustrated in the figures. The actual software code or
specialized control hardware used to implement these sys-
tems and/or methods is not limiting of the implementations.
Thus, the operation and behavior of the systems and/or meth-
ods were described without reference to the specific software
code—it being understood that software and control hard-
ware can be designed to implement the systems and/or meth-
ods based on the description herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
possible implementations. In fact, many of these features may

10

15

20

25

30

35

40

45

50

55

60

65

16

be combined in ways not specifically recited in the claims
and/or disclosed in the specification. Although each depen-
dent claim listed below may directly depend on only one
claim, the disclosure of possible implementations includes
each dependent claim in combination with every other claim
in the claim set.

No element, act, or instruction used herein should be con-
strued as critical or essential unless explicitly described as
such. Also, as used herein, the articles “a” and “an” are
intended to include one or more items, and may be used
interchangeably with “one or more.” Where only one item is
intended, the term “one” or similar language is used. Further,
the phrase “based on” is intended to mean “based, at least in
part, on” unless explicitly stated otherwise.

What is claimed is:
1. A device, comprising:
one or more processors to:
receive, from a client device, a client request associated
with a first TCP connection between a server device
and the client device,
the client request identifying requested content;
determine connection information that identifies the first
TCP connection between the server device and the
client device,
the connection information including at least one of a
source port number associated with the first TCP
connection, a destination port number associated
with the first TCP connection, a packet sequence
number associated with the first TCP connection, a
packet acknowledgement number associated with
the first TCP connection, or a TCP window size
associated with the first TCP connection;
determine whether the client request is a candidate for a
TCP connection transfer based on whether the con-
nection information is identified in a routing table
accessible to the device;
generate a connection transfer request to transfer the first
TCP connection from the server device to a proxy
server when the client request is the candidate for the
TCP connection transfer,
the connection transfer request identifying the con-
nection information and the requested content,
the connection transfer request being different than
the client request;
transmit, to the proxy server, the connection transfer
request,
the connection transfer request, transmitted to the
proxy server, causing the first TCP connection to be
transferred by establishing a second TCP connec-
tion between the proxy server and the client device,
the second TCP connection being established based
on the connection information that identifies the
first TCP connection and without the proxy server
sending a TCP control packet to the client device;
receive, from the proxy server, an indication that the
proxy server is capable of providing the requested
content;
provide, from the proxy server and to the client device
via the second TCP connection, a response to the
client request, based on the indication; and
provide, from the proxy server and to the server device,
information that causes the server device to terminate
the first TCP connection, based on the indication.
2. The device of claim 1, where the one or more processors,
when transmitting the connection transfer request, are to:

US 9,338,192 B1

17

determine, based on the connection information, that the
client request is associated with a connection to be trans-
ferred; and

transmit the connection transfer request based on deter-

mining that the client request is associated with the
connection to be transferred.

3. The device of claim 2, where the one or more processors,
when determining that the client request is associated with the
connection to be transferred, is to:

determine that the client request is associated with the

connection to be transferred based on at least one of:

a port number identified by the client request;

a network address associated with the client request;

an application signature identified by the client request;
or

a comparison of the connection information to informa-
tion stored in the routing table.

4. The device of claim 1, where the one or more processors
are further to:

transmit a keep-alive request to a plurality of proxy servers,

the keep-alive request identifying a selection algorithm
to be used to select one of the plurality of proxy
servers to service the client request;

receive a keep-alive response from one or more of the

plurality of proxy servers,

the keep-alive response identifying status information
associated with the one or more of the plurality of
proxy servers, that identified status information being
based on the selection algorithm;

select a particular proxy server, of the plurality of proxy

servers, based on the selection algorithm and the status
information; and

where the one or more processors, when transmitting the

connection transfer request to the proxy server, are to:
transmit the connection transfer request to the particular
Proxy server.

5. The device of claim 1, where the one or more processors
are further to:

route at least one packet that assists in establishing the first

TCP connection;
where the one or more processors, when transmitting the
connection transfer request to the proxy server, are to:
transmit, to the proxy server, information that identifies
a packet acknowledgement number or a packet
sequence number associated with the at least one
packet; and
where the response to the client request includes informa-
tion that is based on the packet acknowledgement num-
ber or the packet sequence number.

6. The device of claim 1, where the one or more processors
are further to:

determine an amount of time that has passed since the

connection transfer request was submitted to the proxy
server;

determine that the amount of time satisfies a threshold that

is based on a TCP retransmission timeout value; and
route the client request to the server device based on deter-
mining that the amount of time satisfies the threshold.

7. The device of claim 1, where the information that causes
the server device to terminate the first TCP connection
includes information that identifies the client device.

8. A non-transitory computer-readable medium storing
instructions, the instructions comprising:

one or more instructions that, when executed by a proces-

sor of a network device, cause the processor to:

10

15

20

25

30

35

40

45

50

55

60

65

18

receive, from a client device, a client request associated
with a first TCP connection between a server device
and the client device,
the client request identifying requested content;
determine connection information, associated with the
client request, that identifies the first TCP connection,
the connection information including at least one of a
source port number associated with the client
request, a destination port number associated with
the client request, a packet sequence number asso-
ciated with the client request, a packet acknowl-
edgement number associated with the client
request, or a TCP window size associated with the
client request;
determine whether the client request is a candidate for a
TCP connection transfer based on whether the con-
nection information is identified in a routing table
accessible to the network device;
generate a connection transfer request to transfer the first
TCP connection from the server device to a proxy
server when the client request is the candidate for the
TCP connection transfer,
the connection transfer request identifying the con-
nection information and the requested content,
the connection transfer request being different than
the client request;
transmit, to the proxy server, the connection transfer
request,
the connection transfer request transmitted to the
proxy server causing the first TCP connection to be
transferred by establishing a second TCP connec-
tion between the proxy server and the client device,
the second TCP connection being established based
on the connection information that identifies the
first TCP connection and without the proxy server
sending a TCP control packet to the client device;
receive, from the proxy server, an indication that the
requested content is accessible by the proxy server;
route, from the proxy server and to the client device via
the second TCP connection, a response to the client
request, based on the indication; and
route, from the proxy server and to the server device,
information that causes the server device to terminate
the first TCP connection, based on the indication.

9. The non-transitory computer-readable medium of claim
8, where the one or more instructions, that cause the processor
to transmit the connection transfer request, cause the proces-
sor to:

determine, based on the connection information, that the

client request is associated with a connection to be trans-
ferred; and

transmit the connection transfer request based on deter-

mining that the client request is associated with the
connection to be transferred.

10. The non-transitory computer-readable medium of
claim 9, where the one or more instructions, that cause the
processor to determine that the client request is associated
with the connection to be transferred, cause the processor to:

determine that the client request is associated with the

connection to be transferred based on at least one of:

a port number identified by the client request;

a network address associated with the client request;

an application signature identified by the client request; or

a comparison of the connection information to information

stored in the routing table.

US 9,338,192 B1

19

11. The non-transitory computer-readable medium of
claim 8, where the one or more instructions further cause the
processor to:

transmit a keep-alive request to a plurality of proxy servers,

the keep-alive request identifying a selection algorithm
to be used to select one of the plurality of proxy
servers to service the client request;

receive a keep-alive response from one or more of the

plurality of proxy servers,

the keep-alive response identifying status information
associated with the one or more of the plurality of
proxy servers, that identified status information being
based on the selection algorithm;

select a particular proxy server, of the plurality of proxy

servers, based on the selection algorithm and the status
information; and

where the one or more instructions, that cause the proces-

sor to transmit the connection transfer request to the

proxy server, cause the processor to:

transmit the connection transfer request to the particular
Proxy server.

12. The non-transitory computer-readable medium of
claim 8, where the one or more instructions further cause the
processor to:

route at least one packet that assists in establishing the first

TCP connection;

where the one or more instructions, that cause the proces-

sor to transmit the connection transfer request to the

proxy server, cause the processor to:

transmit, to the proxy server, information that identifies
a packet acknowledgement number or a packet
sequence number associated with the at least one
packet; and

where the response to the client request includes informa-

tion that is based on the packet acknowledgement num-
ber or the packet sequence number.

13. The non-transitory computer-readable medium of
claim 8, where the one or more instructions further cause the
processor to:

determine an amount of time that has passed since the

connection transfer request was submitted to the proxy
server;

determine that the amount of time satisfies a threshold that

is based on a TCP retransmission timeout value; and
route the client request to the server device based on deter-
mining that the amount of time satisfies the threshold.

14. The non-transitory computer-readable medium of
claim 8, where the connection information comprises at least
one of:

a source network address associated with the client

request;

a destination network address associated with the client

request; or

an application signature associated with the client request.

15. A method, comprising:

receiving, by a network device and from a client device, a

client request that identifies requested content;
determining, by the network device, connection informa-
tion that identifies a first TCP connection between the
client device and a server device,
the connection information including at least one of a
source port number associated with the first TCP con-
nection, a destination port number associated with the
first TCP connection, a packet sequence number asso-
ciated with the first TCP connection, a packet
acknowledgement number associated with the first

10

15

20

25

30

35

40

45

50

55

60

65

20

TCP connection, or a TCP window size associated
with the first TCP connection;
determining, by the network device, whether the client
request is a candidate for a TCP connection transfer
based on whether the connection information is identi-
fied in a routing table accessible to the network device;
generating, by the network device, a connection transfer
request to transfer the first TCP connection from the
server device to a proxy server when the client request is
the candidate for the TCP connection transfer,
the connection transfer request identifying the connec-
tion information and the requested content,
the connection transfer request being different than the
client request;
transmitting, by the network device and to the proxy server,
the connection transfer request,
the connection transfer request, transmitted to the proxy
server, causing the first TCP connection to be trans-
ferred by establishing a second TCP connection
between the proxy server and the client device,
the second TCP connection being established based on
the connection information that identifies the first
TCP connection and without the proxy server sending
a TCP control packet to the client device;
receiving, by the network device and from the proxy server,
an indication that the requested content is stored by the
Proxy server;
routing, by the network device and from the proxy server to
the client device via the second TCP connection, a
response to the client request, based on the indication;
and
routing, by the network device and from the proxy server to
the server device, information that causes the server
device to terminate the first TCP connection, based on
the indication.
16. The method of claim 15, where transmitting the con-
nection transfer request comprises:
determining that the client request is associated with a
connection to be transferred, based on at least one of:
a port number identified by the client request,
a network address associated with the client request,
an application signature identified by the client request,
or
a comparison of the connection information to informa-
tion stored in the routing table; and
transmitting the connection transfer request based on
determining that the client request is associated with the
connection to be transferred.
17. The method of claim 15, further comprising:
transmitting a keep-alive request to a plurality of proxy
servers,
the keep-alive request identifying a selection algorithm
to be used to select one of the plurality of proxy
servers to service the client request;
receiving a keep-alive response from one or more of the
plurality of proxy servers,
the keep-alive response identifying status information
associated with the one or more of the plurality of
proxy servers, that identified status information being
based on the selection algorithm;
selecting a particular proxy server, of the plurality of proxy
servers, based on the selection algorithm and the status
information; and
where transmitting the connection transfer request to the
Proxy server comprises:
transmitting the connection transfer request to the par-
ticular proxy server.

US 9,338,192 B1

21

18. The method of claim 15, further comprising:
routing at least one packet that assists in establishing the
first TCP connection;
where transmitting the connection transfer request to the
proxy server comprises:
transmitting, to the proxy server, information that iden-
tifies a packet acknowledgement number or a packet
sequence number associated with the at least one
packet; and
where the response to the client request includes informa-
tion that is based on the packet acknowledgement num-
ber or the packet sequence number.
19. The method of claim 15, further comprising:
determining an amount of time that has passed since the
connection transfer request was submitted to the proxy
server;
determining that the amount of time satisfies a threshold
that is based on a TCP retransmission timeout value; and
routing the client request to the server device based on
determining that the amount of time satisfies the thresh-
old.
20. The method of claim 15, where the connection infor-
mation comprises at least one of:
a source network address associated with the first TCP
connection;
a destination network address associated with the first TCP
connection; or
a protocol associated with the first TCP connection.

#* #* #* #* #*

10

15

20

25

22

